2024-2025 / MATH0461-2

Introduction to numerical optimization

Duration

30h Th, 20h Pr, 25h Proj.

Number of credits

 Bachelor of Science (BSc) in Engineering5 crédits 
 Master MSc. in Engineering Physics, research focus5 crédits 
 Master MSc. in Computer Science, professional focus in computer systems security5 crédits 
 Master MSc. in Data Science, professional focus5 crédits 
 Master MSc. in Electrical Engineering, professional focus in electronic systems and devices5 crédits 
 Master MSc. in Electromechanical Engineering, professional focus in energetics (Inscriptions closes)5 crédits 
 Master Msc. in electrical engineering, professional focus in "Smart grids"5 crédits 
 Master MSc. in Data Science and Engineering, professional focus5 crédits 
 Master MSc. in Computer Science and Engineering, professional focus in management5 crédits 
 Master Msc. in computer science and engineering, professional focus in intelligent systems5 crédits 
 Master MSc. in Computer Science, professional focus in management5 crédits 
 Master Msc. in Energy Engineering, professional focus in Networks5 crédits 
 Master Msc. in Electrical Engineering, professional focus in Neuromorphic Engineering5 crédits 
 Master MSc. in Computer Science and Engineering, professional focus in computer systems and networks5 crédits 
 Master MSc. in Computer Science, professional focus in intelligent systems5 crédits 
 Master in mathematics, research focus6 crédits 
 Master in mathematics, teaching focus6 crédits 

Lecturer

Quentin Louveaux

Language(s) of instruction

English language

Organisation and examination

Teaching in the first semester, review in January

Schedule

Schedule online

Units courses prerequisite and corequisite

Prerequisite or corequisite units are presented within each program

Learning unit contents

In a large number of engineering problems, many decisions can be undertaken leading to different solutions, some of them being more interesting than others. A way to decide on the best decision is to come up with a mathematical model in which all decisions are variables and the choice is made by considering a function of the values of all variables.

This formalism modeling many real-life problems is called mathematical programming. In a mathematical program, we define a set of decision variables, constraints linking the variables and defining what is a feasible solution and finally an objective function to optimize. Depending on the properties of all the considered functions, the obtained optimization problem can be more or less difficult to solve. In this course we consider three types of optimization problems: linear problems and their structure (duality), nonlinear problems that keep the nice structure (conic problems) and finally problems without any structure.

The following concepts are studied in the course:
- The revised Simplex Algorithm
- Duality for linear programming
- Post-optimal analysis and the Dual Simplex Algorithm
- Introduction to interior point methods
- Optimality conditions for nonlinear programs
- Conic programming and duality
- Numerical methods for nonlinear optimization

This course is given in English.

Learning outcomes of the learning unit

At the end of the course, the student will be able to

  • formulate a real problem in terms of a mathematical optimization model
  • determine the complexity of an optimization problem and in particular whether it can be solved in polynomial time
  • write the dual of a linear or a conic problem
  • apply or implement the main optimization algorithms (simplex, dual simplex, interior-point methods, gradient descent, quasi-Newton)
This course contributes to the learning outcomes I.1, I.2, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, VI.1, VI.2, VI.3, VII.2, VII.3, VII.4, VII.5 of the MSc in biomedical engineering.

This course contributes to the learning outcomes I.1, I.2, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, IV.4, VI.1, VI.2, VI.3, VII.2, VII.3, VII.4, VII.5 of the MSc in data science and engineering.

This course contributes to the learning outcomes I.1, I.2, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, VI.1, VI.2, VI.3, VII.2, VII.3, VII.4, VII.5 of the MSc in electrical engineering.

This course contributes to the learning outcomes I.1, I.2, II.1, II.2, III.1, III.2, III.3, III.4, IV.1, IV.3, VI.1, VI.2, VI.3, VII.2, VII.3, VII.4, VII.5 of the MSc in computer science and engineering.

This course contributes to the learning outcomes I.1, I.2, II.1, II.2, III.1, III.2, III.2, III.3, III.3, III.4, IV.1, VI.1, VI.2, VI.3, VII.2, VII.3, VII.4, VII.5 of the MSc in engineering physics.

 

Prerequisite knowledge and skills

Basic course in linear algebra and calculus. Some basic knowledge of a programming language is also required.

Planned learning activities and teaching methods

Traditional tutorials are organized for roughly 20 hours. A larger project consisting in modeling and solving a real-world problem using a linear programming package is also organized.

Mode of delivery (face to face, distance learning, hybrid learning)

Face-to-face course


Additional information:

The lecture is given in face-to-face.

Course materials and recommended or required readings

Platform(s) used for course materials:
- eCampus


Further information:

D. Bertsimas, J. Tsistsiklis. Introduction to linear optimization, Dynamic Ideas, 1997.

S. Boyd, L. Vandenberghe. Convex Optimization, 2004.

Exam(s) in session

Any session

- In-person

written exam ( open-ended questions )

Written work / report


Additional information:

The exam is written.

It is made of one theory question (a true/false with justification) and exercises similar to those solved in the tutorial sessions.

For the final grade, the exam mark counts for 2/3 and the project mark counts for 1/3. In case it is more advantageous for the student, the exam mark can count towards the entire grade.  The project must be presented during the first session within the period provided for this purpose. There is no possibility to represent the project at another time.
 

Work placement(s)

Organisational remarks and main changes to the course

The course is taught in English.

All documents are available via ecampus.

Contacts

The professor is Quentin Louveaux q.louveaux@uliege.be

The teaching assistant is Laurie Boveroux Laurie.Boveroux@uliege.be

 

Association of one or more MOOCs