Duration
7h Th, 9h Pr, 2h SEM
Number of credits
Master in bioengineering: chemistry and bio-industries, professional focus | 2 crédits | |||
Advanced Master in Management of Food Chain Safety | 2 crédits |
Lecturer
Language(s) of instruction
English language
Organisation and examination
Teaching in the first semester, review in January
Schedule
Units courses prerequisite and corequisite
Prerequisite or corequisite units are presented within each program
Learning unit contents
Theoretical part:
PART I : natural and synthetic microbial communities
- Importance of microbial communities for various applications
- Engineering natural and synthetic communities
- Impact of phenotypic diversification and evolution on microbial communities
PART II : use of natural communties in wastewater engineering
- Activated sludge process
- Advanced biologial processes
- Anaerobic processes
Pratical part (lab):
The students will implement a synthetic community comprising 4 players i.e., E. coli, P. putida, B. subtilis and S. cerevisiae and will characterize the dynamics of this community. The synthetic community will be cultivated on the long-term in a continuous bioreactor. The students will learn how to set-up this cultivation experiment and how to use automated flow cytometry as a fast method for tracking community composition. Beside wet lab, dry lab modeling and simulations activities will be considered to predict in silico the fate of the community. Based on this experiment, more complex concepts, such as the impact of phenotypic diversification and evolution on community stability and composition, will be discussed.
Learning outcomes of the learning unit
The goal of the lecture is to provide the students with basic mechanistic knowledge about how microbial interactions is acting in natural ecosystems (i.e. in this specific case, focused on aquatic ecosystems), as well as i, laboratory environment (synthetic communities and synthetic ecology). These knowledges will be complemented with engineering principles aiming at controlling microbial population in the context of environmental biotechnology (but can also be applied to other fields of biotechnology)
Prerequisite knowledge and skills
Basic knowledge (bachelor degree) in physics, chemistry and mathematics. More specific knowledge about microbioloy and systems biology, as well as in the simulation of dynamical systems are recommended
Planned learning activities and teaching methods
Mode of delivery (face to face, distance learning, hybrid learning)
Face-to-face course
Further information:
Lectures : 9h
Practical Works : 12h
Course materials and recommended or required readings
Oral examination (100%)
Work placement(s)
Organisational remarks and main changes to the course
Présence obligatoire aux travaux pratiques. Une absence non justifiée conduira à une note d'exclusion.
Remarques organisationnelles
Pour des raisons de sécurité, l'accès au laboratoire/hall pilote n'est autorisé qu'aux étudiants officiellement inscrits. Chaque étudiant doit veiller à ne pas oublier son tablier de laboratoire et ses lunettes de sécurité le jour du TP. Aucun tablier de 'secours' ne sera fourni aux distraits. Le laboratoire est un endroit potentiellement dangereux, il est strictement interdit d'y boire, manger et fumer. Il est indispensable d'y porter des chaussures fermées, des pantalons et d'attacher les cheveux longs.
D'une façon générale, les consignes relatives à la sécurité au laboratoire de chimie doivent être respectée (vade mecum consultable à TERRA)
Contacts
Prof. F. Delvigne
Microbial Processes and Interactions lab (MiPI)
Université de Liège - Gembloux Agro-Bio Tech
F.Delvigne@uliege.be
081 62 23 09