2024-2025 / SPAT0263-1

Machine Learning in Space Sciences

Durée

30h Th, 15h Pr

Nombre de crédits

 Master en science des données, à finalité spécialisée5 crédits 
 Master : ingénieur civil en science des données, à finalité spécialisée5 crédits 

Enseignant

Maxime Fays

Langue(s) de l'unité d'enseignement

Langue anglaise

Organisation et évaluation

Enseignement au premier quadrimestre, examen en janvier

Horaire

Horaire en ligne

Unités d'enseignement prérequises et corequises

Les unités prérequises ou corequises sont présentées au sein de chaque programme

Contenus de l'unité d'enseignement

This master-level course is designed to provide students with advanced knowledge and skills in applying machine learning techniques to space science research. Students will explore various aspects of space science, from satellite data analysis to astrophysical simulations, and learn how machine learning can enhance our understanding of the cosmos.
Through a combination of lectures, hands-on projects, and research assignments, participants will develop expertise in both space science and machine learning, making them well-equipped for careers in academia, research institutions, and space industry.

Space science topics to be covered (tentative and subject to change):
* Exoplanet Detection and Characterization
* Cosmic Microwave Background Analysis
* Gravitational Wave Detection and Analysis
* Stellar Evolution and Classification
* Galaxy Morphology and Classification
* Dark Matter and Dark Energy Studies
* Black Hole Imaging and Event Horizon Studies
* Solar Activity and Space Weather Prediction
* Astronomical Surveys and Sky Mapping
* Astroparticle Physics and Neutrino Detection

Machine learning techniques to be covered (tentative and subject to change):

* Random Forests
* Convolutional Neural Networks (CNNs)
* Long Short-Term Memory (LSTM) Networks
* Principal Component Analysis (PCA)
* Support Vector Machines (SVM)
* Recurrent Neural Networks (RNNs)
* K-Means Clustering
* Gaussian Mixture Models (GMMs)
* Transfer Learning with Pre-trained Models
* Generative Adversarial Networks (GANs)

Acquis d'apprentissage (objectifs d'apprentissage) de l'unité d'enseignement

Students will develop expertise in both space science and machine learning, making them well-equipped for careers in academia, research institutions, and the space industry. Graduates of this course will be well positioned to develop innovative space-related algorithms, and drive the next generation of space science discoveries through data-driven approaches. 

 

Savoirs et compétences prérequis

///

Activités d'apprentissage prévues et méthodes d'enseignement

This course is based on lectures, and on discussion sessions where problems are discussed & solved in the class. The problems will be solved by the students, under the guidance of the instructor.

Mode d'enseignement (présentiel, à distance, hybride)

Cours donné exclusivement en présentiel


Explications complémentaires:

Face-to-face if possible, depending on the COVID situation.

Supports de cours, lectures obligatoires ou recommandées

Statistics, Data Mining, and Machine Learning for Astronomy, Ivezic et al.

Modalités d'évaluation et critères

Examen(s) en session

Toutes sessions confondues

- En présentiel

évaluation orale

Travail à rendre - rapport


Explications complémentaires:

The exam will consist of several questions concerning the theory as seen during the lectures. 

Regarding the Machine Learning application, a take-home exam on a subject discussed together with the lecturer will be assigned to assess students' comprehension and practical application of machine learning techniques in space science.

Stage(s)

Remarques organisationnelles et modifications principales apportées au cours

Each lesson will start with a short (%7E30 minutes, depending on the topic) theoretical introduction to the astrophysical concept necessary to establish foundational understanding before delving into the practical aspects of applying machine learning techniques in space science, through the use of a jupyter notebook given by the lecturer. 

Contacts

Maxime Fays

(maxime.fays@uliege.be)

Room 4.43 Bât. B5A

Inter. fondamentales en physique et astrophysique (IFPA)

Quartier Agora allée du six Août 19

4000 Liège

Téléphone de service: +32 4 3663643

Association d'un ou plusieurs MOOCs